
www.umbc.edu

CMSC202
 Computer Science II for Majors

Lecture 01 –

Introduction and C++ Primer

Dr. Katherine Gibson

Based on slides by Chris Marron at UMBC

www.umbc.edu

Course Overview

www.umbc.edu

Course Information

• Second course in the CMSC intro sequence

–Preceded by 201

• CS majors must pass with a B or better

• CMPE majors must get at least a C

3

www.umbc.edu

Quick Note About Grades

• Students are not allowed to retake a class if
they have taken its successor

• If you are a CMSC major and received a “C” in
201, you must retake 201 before this class

– If you receive a grade in this class, you can no
longer be a computer science major at UMBC!

• Students are only allowed two attempts in
CMSC 201 or CMSC 202

– A “W” counts as an attempt!

4

www.umbc.edu

About Me

• Dr. Katherine Gibson

– Education

• BS in Computer Science, UMBC

• PhD, University of Pennsylvania

– Likes

• Video games

• Dogs

5

www.umbc.edu

What the Course is About

• An introduction to

– Object-oriented programming (OOP) and
object-oriented design (OOD)

– Basic software engineering techniques

• Emphasis on proper program design

• Tools

– C++ programming language, GCC (Gnu Compiler)

– Linux (GL system)

6

www.umbc.edu

Review of the Syllabus

• Grading Criteria

• Course Policies

• Attendance

• Communication

• Academic Integrity

• Professor Marron’s website (for assignments)
http://www.csee.umbc.edu/courses/undergraduate/202/spring16_marron/

7

http://www.csee.umbc.edu/courses/undergraduate/202/spring16_marron/
http://www.csee.umbc.edu/courses/undergraduate/202/spring16_marron/

www.umbc.edu

Announcement: Note Taker

A peer note taker has been requested for this class. A peer note
taker is a volunteer student who provides a copy of his or her
notes for each class session to another member of the class who
has been deemed eligible for this service based on a disability.
Peer note takers will be paid a $200 stipend for their service.
Peer note taking is not a part time job but rather a volunteer
service for which enrolled students can earn a stipend for
sharing the notes they are already taking for themselves.

If you are interested in serving in this important role, please fill
out a note taker application on the Student Disability Services
website or in person in the SDS office in Math/Psychology 213.

8

www.umbc.edu

Today’s Objectives

• To discuss the differences between the
Python and C++ programming languages

– Interpreted vs compiled

– More restrictions on programming “style”

• To begin covering the basics of C++

– Classes

– Object-Oriented Programming

9

www.umbc.edu

Development Environment

• You will use the GL Linux systems and GCC
(GNU Compiler Collection) suite for development.

• You will learn to be semi-literate in Linux and shell usage.

• You will learn to use a text editor — Emacs is
recommended.

• You may use IDEs such as Eclipse or XCode, but
support will not be provided, and…

Your programs must compile and function
correctly on the GL Linux systems.

 10

www.umbc.edu

Challenges

• Getting used to the Linux environment
(tends to hit transfer students hardest).

• Starting the projects early.

• CMSC 202 is much more difficult than CMSC
201 – you will need to be more self-sufficient.

• Waiting too late to seek help.

• Thinking all that matters is the projects.

– Practice programming outside of the projects!

11

www.umbc.edu

Why C++ for CMSC 202?

• Popular modern OO language

• Wide industry usage

• Used in many types of applications

• Desirable features

– Object-oriented

– Portable (not as much as Java, but fairly so)

– Efficient

– Retains much of its C origins

12

www.umbc.edu

Procedural vs OOP

• Procedural
– Modular units: functions
– Program structure: hierarchical
– Data and operations are not

bound to each other
– Examples:

• C, Pascal, Basic, Python

13

A Collection
of Objects

A Hierarchy of
Functions

• Object-Oriented (OO)
– Modular units: objects
– Program structure: a graph
– Data and operations are bound

to each other
– Examples:

• C++, Java, Python (huh?!)

www.umbc.edu

Classes

• First off, what is a class?

– A data type containing:

• Attributes – make up the object’s state

• Operations – define the object’s behaviors

14

Bank Account

account number
owner’s name
balance
interest rate
more?

deposit money
withdraw money
check balance
transfer money
more?

Operations
(behaviors)

Type

Attributes
(state)

String

sequence of characters
more?

compute length
concatenate
test for equality
more?

www.umbc.edu

Objects

• An object is a particular instance of a class

• For any of these accounts, one can…

– Deposit money

– Withdraw money

– Check the balance

– Transfer money

 15

Marron’s Account Chang’s Account Gibson’s Account

43-261-5
Katherine Gibson
$825.50
2.5%

12-345-6
Chris Marron
$1,250.86
1.5%

65-432-1
Richard Chang
$5.50
2.7%

www.umbc.edu

Interpreters, Compilers, & Hybrids

16

Interpreted Languages (e.g. JavaScript, Perl, Ruby)

translate &
execute

source code

interpreter

Interpreter translates source into binary and executes it

Small, easy to write
Interpreter is unique to each platform (operating system)

Compiled Languages (e.g. C, C++)

Compiler is platform dependent
compile

source code binary code
execute

compiler command

JVM is an interpreter that is
platform dependent

Many other models: e.g., Java (Python is stranger still):
Bytecode is platform
independent

compile
translate &

execute

source code bytecode

Java Virtual Machine
(JVM)

Java compiler

www.umbc.edu

C++ Compilation and Linkage

17

C++ source

code

Linux
C++

compiler

Windows
C++

compiler

Linux
linker Linux C++

binary
Linux C++

executable

code

Windows
linker

Windows

C++ binary

Windows C++

executable

code

Linux C++

code library binary library

code

Windows C++

code library

binary

library code

Any
text editor

www.umbc.edu

Python vs C++ Syntax

These pieces of code do
the same thing!

What’s different about
these two languages?

18

print "Hello, world"

quotient = 3 / 4

if quotient == 0:

 print "3/4 == 0",

 print "in Python"

else:

 print "3/4 != 0"

 #include <iostream>

 using namespace std;

 int main() {

 int quotient;

 cout << "Hello, world";

 quotient = 3 / 4;

 if (quotient == 0) {

 cout << "3/4 == 0";

 cout << " in C++";

 } else {

 cout << "3/4 != 0";

 }

 return 0;

 }

Python C++

www.umbc.edu

Python vs C++ Syntax: Answer

19

print "Hello, world"

quotient = 3 / 4

if quotient == 0:

 print "3/4 == 0",

 print "in Python"

else:

 print "3/4 != 0"

 #include <iostream>

 using namespace std;

 int main() {

 int quotient;

 cout << "Hello, world";

 quotient = 3 / 4;

 if (quotient == 0) {

 cout << "3/4 == 0";

 cout << " in C++";

 } else {

 cout << "3/4 != 0";

 }

 return 0;

 }

Python C++

• Must have a “main()” function

• Statements end with “;”

• Variables must be declared

• “if/else” syntax different

• Statement blocks demarcated by
“{...}”

• But much of it is similar

www.umbc.edu

C++ Primer

20

www.umbc.edu

A Sample C++ Program

21

www.umbc.edu

Sample Program Usage

22

www.umbc.edu

C++ Identifiers and Variables

• C++ Identifiers

– Can’t use keywords/reserved words

– Case-sensitivity and validity of identifiers

– Meaningful names!

– Used for variables, class names, and more

• Variables

– A memory location to store data for a program

– Must declare all data before use in program

23

www.umbc.edu

Variable Declaration

• Syntax: <type> <legal identifier>;

• Examples:
int sum;

float average;

double grade = 98;

• Must be declared before being used

• Must be declared to be of a given type
(e.g. int, float, char, etc.)

24

Don’t forget
the semicolon

at the end!

www.umbc.edu

Declaring a Variable

• When we declare a variable, we tell the
compiler:

– When and where to set aside memory space for
the variable

– How much memory to set aside

– How to interpret the contents of that memory;
AKA, the specified data type

– What name we will be referring to that location
by: its identifier, or name

25

www.umbc.edu

Naming Conventions

• Naming conventions are rules for names of
variables to improve readability

– CMSC 202 has its own standards, described in detail
on the course website

• Start with a lowercase letter

• Indicate "word" boundaries with an uppercase letter

• Restrict the remaining characters to digits and lowercase
letters

topSpeed bankRate1 timeOfArrival

• Note: variable names are still case sensitive!

 26

www.umbc.edu

Simple Data Types

27

www.umbc.edu

Simple Data Types

28

Important Data Types

www.umbc.edu

More Simple Data Types

29

www.umbc.edu

More Simple Data Types

30

Important Data Types

www.umbc.edu

Data Types

• One of the big changes from Python to C++

• Variables can only be of one type

– A string cannot be changed into a list

– A tuple cannot be changed into a dictionary

– An integer is always an integer – forever

• A variable’s type must be explicitly declared

31

www.umbc.edu

Assigning Data

• You can initialize data in declaration statement

– Results will be "undefined" if you don’t initialize!
int myValue = 0;

• Assigning data during execution

– Lvalues (left-side) & Rvalues (right-side)

• Lvalues must be variables

• Rvalues can be any expression

– Example: distance = rate * time;

 Lvalue: "distance“

 Rvalue: "rate * time"

 32

www.umbc.edu

Data Assignment Rules

• Compatibility of Data Assignments

– Type mismatches

• Cannot place value of one type into variable of another
type

– intVar = 2.99;  2 is assigned to intVar!

– Only the integer part "fits", so that’s all that goes

– Called "implicit" or "automatic type conversion"

• Literals

– 2, 5.75, 'Z', "Hello World\n"

– Also known as "constants": can’t change in program

 33

www.umbc.edu

Literal Data

34

• Literals

– Examples:
2 // Literal constant int

5.75 // Literal constant double

'Z' // Literal constant char

"Hello World\n" // Literal constant string

• Cannot change values during execution

• Called "literals" because you "literally typed"
them in your program!

www.umbc.edu

Announcements

• There will be an important handout on
Tuesday, which will only be available in class

• The Blackboard site will be available soon

• Next Time: Continuation of the C++ Primer,
and we’ll begin Functions

35

